Golden Boy Provides A New Lead to Fight Muscular Dystrophy

Ringo helps fight DMDRingo, the dog that led to the discovery of a gene that mutes the effects of dystrophin loss in Duchenne muscular dystrophy. Ringo, along with one of his male offspring, has a variant in the Jagged1 gene that enabled him to walk and run normally …

It’s not Lassie saving Timmy from the well, but a golden retriever might help save the day for those suffering from Duchenne muscular dystrophy (DMD) one of the most common forms of muscular dystrophy.

Ringo, the golden retriever, has provided a new lead for treating this muscle-wasting disorder by staying healthy despite having the gene mutation for DMD. Upon further study, researchers at Boston Children’s Hospital, the Broad Institute of MIT and Harvard and the University of São Paolo in Brazil were able to pinpoint a protective gene that boosts muscle regeneration, helping some dogs “escape” the disease’s effects and just published their results in the online journal Cell.

More on the breaking medical news research

Natássia Vieira, PhD, a fellow in The Boston Children’s lab of Lou Kunkel, PhD, originally from the University of São Paolo and first author on the Cell paper, had been studying a colony of golden retrievers in Brazil that had the classic DMD mutation, which causes loss or dysfunction of the dystrophin protein. These dogs were very weak and typically died by 2 years of age, but one dog, Ringo, was able to walk and run normally and lived to the age of 11.

When Vieira joined Kunkel’s lab, they set out to find out how “escaper” dogs have fully functioning muscle, even without dystrophin. “We decided to do genome-wide association studies (GWAS) to see where in the genome there might be a gene that modifies disease severity,” says Kunkel, the paper’s co-senior author with Mayana Zatz, DSc, of the University of São Paolo.

Kunkel and Vieira partnered with Kerstin Lindblad-Toh, PhD, at the Broad Institute to conduct the GWAS research. Lindblad-Toh had done genomic studies tracing the evolution of dogs, so was intimately familiar with their genetic complexity. Dogs have highly diverse genomes, and each breed has a different genomic signature.

Combining family linkage analysis and GWAS, the team compared the genomes of two escaper dogs (Ringo and one of his male offspring) and 31 severely affected golden retrievers. They found that a region on chromosome 24 tracked with disease severity.

To narrow the search, Vieira then used gene expression arrays, which measure what genes in a DNA sample are expressed (turned on). When she compared the two escapers with the affected dogs, she found 65 genes that were differently expressed. But only one gene was on the region of chromosome 24 flagged by the GWAS study: Jagged1, a gene known to be involved in muscle regeneration.

But what change in Jagged1 accounted for the difference in disease severity? The researchers decided to sequence the entire genome of Ringo and two of his male offspring—the escaper and one severely affected puppy. (DMD is an X-linked disorder that only affects males.)

“We asked, ‘what did the father pass to the escaper that made him able to escape the disease?'” says Vieira.

That led them to a sequence of DNA that functions as a promoter, turning Jagged1 on. As a result, the escaper dogs, which carried a slightly different sequence, expressed Jagged1 at twice the rate of the affected dogs.

Zebrafish drug screens are the next step

To confirm that Jagged1 explained the difference in disease severity, Vieira and Kunkel moved to zebrafish engineered to carry the DMD mutation. These fish have muscles that are clearly broken and disorganized, and they are visibly weak.

“They’re basically immobile; if you touch them, they only move a little,” says Kunkel. “It’s completely compromised muscle.” But when Vieira and Kunkel artificially stimulated Jagged1 expression, they found that the fish, despite being dystrophin-deficient, had normal-appearing muscles and swam normally.

The findings make Jagged1 a new potential target for therapies aimed at improving muscle function, says Kunkel. “We’re trying to mimic the effect of the promoter and trying to upregulate Jagged1 in fish and mice, using small molecules,” he says. “Zebrafish are permeable to small molecules and have a muscle phenotype that you can score.”

Kunkel, who first identified dystrophin in 1987, notes that other therapies for DMD are in the clinical pipeline. One approach tricks the cellular machinery into making dystrophin, making DMD milder; another increases levels of utrophin, a protein much like dystrophin that could compensate for its absence. Still other approaches seek to address problems caused by dystrophin loss, such as reversing impaired production of nitric oxide to improve blood flow.

Jagged1 upregulation is just another avenue for therapy that needs to be pursued,” Kunkel says. “The different approaches work on different systems and are going to be complementary. This is the ‘decade of therapy.’”

The study was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the NIH (award number R01AR064300), the Duchenne Foundation, FAPESP-CEPID (# 2013/08028-1), CNPq (#705019/2009), INCT (#2008/578997), AACD, FID (#000663/2014), the Bernard F. and Alva B. Gimbel Foundation and the Muscular Dystrophy Association (MDA352465).

MedCareerNews provides information about the medical field that will affect your career options, advice about moving your career forward, quizzes and more! Subscribe on the website today or follow Med Career News on FacebookTwitterLinked In or Google Plus.  You can also get medical career targeted help with your cover letter, resume and sales plans at 306090 Medical Sales.

 

Get Med Career News in your Inbox!

If you want to keep up with the latest news and career tips in the Medical Field subscribe today!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.